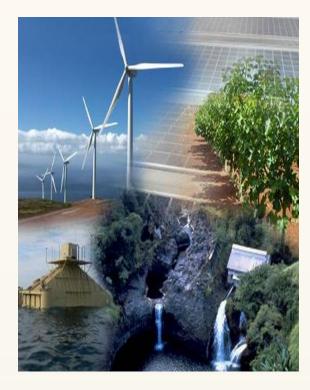
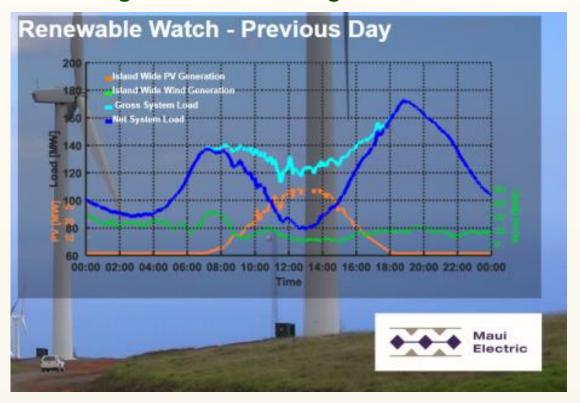


Hawaii Natural Energy Institute

School of Ocean and Earth Science and Technology University of Hawaii at Manoa


Modern Grid Technology and Leading Practices Workshop

Roundtable Discussion: State of the Modern Grid


May 2017

James "Jay" Griffin, Ph.D. Assistant Researcher Hawaii Natural Energy Institute

Reaching Near-Term Goals Requires Moving Beyond Current Grid Limitations

Grid "Congestion" Increasing in Peak Solar Hours

February 1, 2017 Maui Electric Grid Operations

Current analyses suggest near-term limits during these hours under status quo

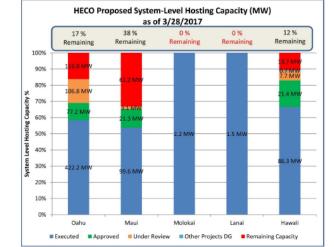
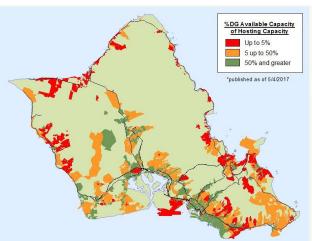




Figure 1-1. HECO Proposed System-Level Hosting Capacity as of 3/28/2017 (excludes controllable/curtailable capacity).

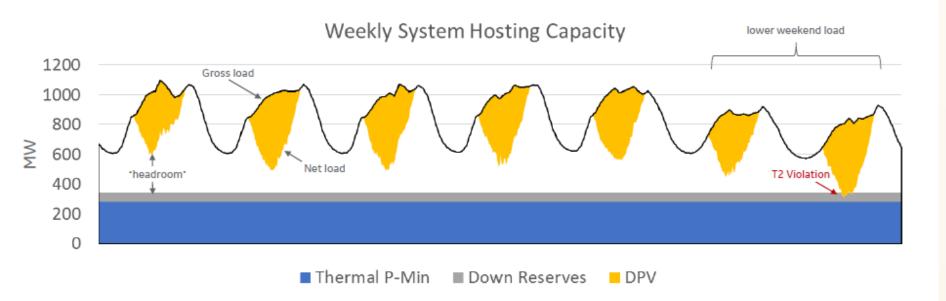
Reaching Near-Term Goals Requires Moving Beyond Current Grid Limitations

HECO Companies' Near-Term Action Plan

2017-2021 Renewable Energy and Demand Response Additions

Substantial near-term growth projected for utilityscale renewables and distributed energy resources

Integrated Grid as Platform to Enable Clean Energy Future


Key Considerations:

- Unlock value and capacity of existing infrastructure
- Customer demand for new technologies
- Leverage existing and new DERs for reliability
- Manage costs, affordable rates

Key Considerations in Near-Term Transition

Unlocking renewable integration capacity of existing infrastructure

- system-level hosting capacity limited during peak solar hours under certain conditions
- appears to be significant capacity outside of these periods
- further analysis necessary to identify analogs at the distribution level

Violation triggered during limited number of low load, high solar periods

Average annual headroom during mid-day ≈ 300 MW

Average annual headroom during evening ≈ 700 MW

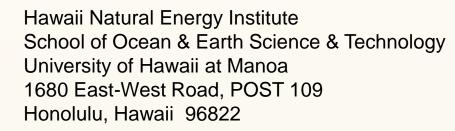
Preliminary results from HNEI-GE Energy analysis in progress

Key Considerations in Near-Term Transition

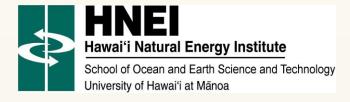
Growing customer interest in DERs beyond rooftop solar

• facilitate integration of EVs, storage, advanced DSM technologies, microgrids, etc.

Leveraging existing and future DERs to support reliability


- reserve requirements increase with renewable additions
- new sources of grid services needed as traditional generation is displaced
- will require closer coordination of system operations with distribution system conditions

Managing costs to maintain affordable rates


- maximize customer value of investments
- identify opportunities to reduce costs with non-wires alternatives
- co-optimize resources between bulk power and distribution systems

Mahalo! (Thank you)

Website: www.hnei.hawaii.edu

Assumptions for System Hosting Capacity Screening Analysis

Inputs & Assumptions

Туре	Unit Name	Current P- Min	E3 P-Min	Must-Run	Must-Run P-Min
Coal	AES	63.0	63.0	1	63
CC	KALCC1	65.0	65.0	1	65
CC CC CC	KALCC2	65.0	65.0	0	0
CC	KALCC3	0.0	0.0	0	0
ST	KAHE1	23.8	4.0	1	4
ST	KAHE2	24.0	4.0	1	4
ST	KAHE3	24.1	5.0	1	5
ST	KAHE4	22.4	5.0	1	5
ST	KAHE5	38.8	21.0	1	21
ST	KAHE6	38.8	40.0	1	40
ST	WAIAU3	22.3	22.3	0	0
ST	WAIAU4	22.3	22.3	0	0
ST	WAIAU5	22.5	22.5	0	0
ST	WAIAU6	22.5	22.5	0	0
ST	WAIAU7	23.0	5.0	1	5
ST	WAIAU8	22.6	5.0	1	5
ST	WAIAU9	21.1	21.1	0	0
ST	WAIAU10	20.0	20.0	0	0
Bio-Diesel	AIRDSG	4.0	4.0	0	0
Bio-Diesel	CIPCT	41.2	41.2	0	0
Bio-Diesel	SCHOFIL1	4.6	4.6	0	0
Bio-Diesel	SCHOFIL2	4.6	4.6	0	0
Bio-Diesel	SCHOFIL3	4.6	4.6	0	0
Bio-Diesel	SCHOFIL4	4.6	4.6	0	0
Bio-Diesel	SCHOFIL5	4.6	4.6	0	0
Bio-Diesel	SCHOFIL6	4.6	4.6	0	0
Waste	HPOWER	63.0	63.0	1	63

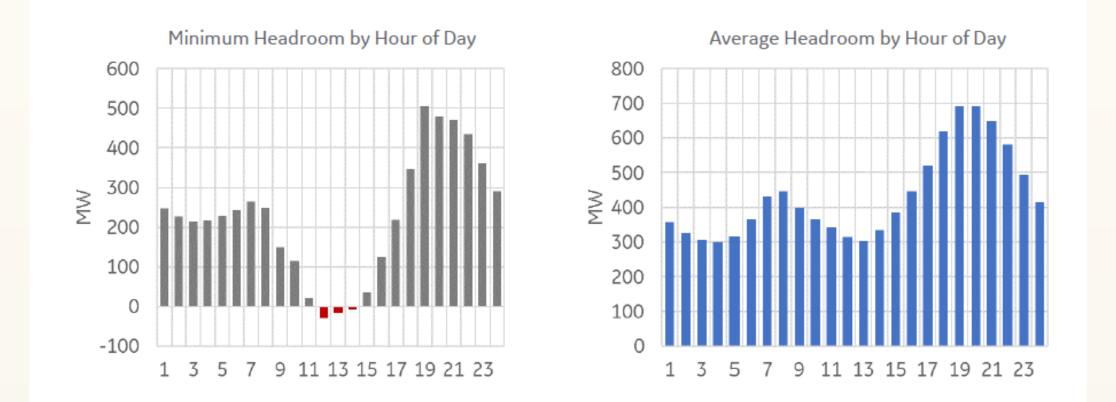
Assumptions

280 System P-Min 60 Down Reserve Requirement (MW) E3 P-Min P-Min Assumption 605 Installed DPV

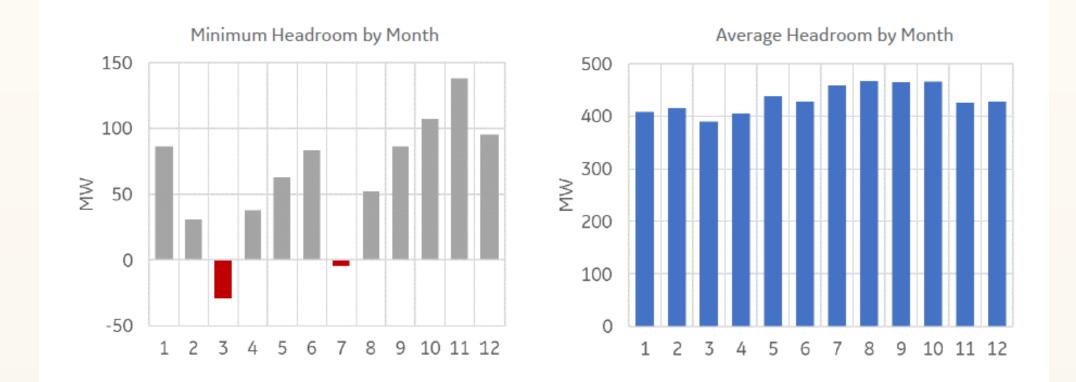
Results 12 Count of Violations -29 Minimum Headroom 843 Maximum Headroom

433 Average Headroom

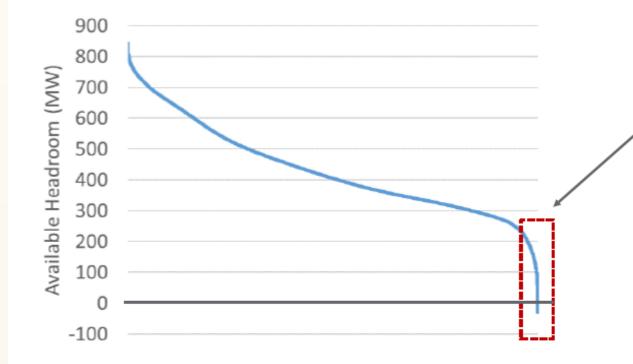
Key Assumptions:


Gross Load Profile	from PSIP assumptions
DPV Profile	from HSIS, AWS Truepower
Must-Runs	E3 report
P-Mins	E3 report

Methodology:


- 1. Create 10-min load and DPV solar data for 1-year*
- 2. Calculate headroom for each interval
- = gross load must run Pmins down reserves DPV 3. Increase DPV until number of violations (negative headroom) = 12

*Stochastics not included (yet), 1-year of chronological load and pv data, will evaluate stochastic, must-year data next


Summary Statistics for Headroom by Hour of Day

Summary Statistics for Headroom by Month

"Duration Curve" of Annual Available Headroom

"hockey-stick" tail end of distribution will make the results very sensitivity to small changes in inputs and assumptions...

- DPV chronological profile
- Load profile & forecast
- Outages, etc.