

Considerations for a Modern Grid

Joe Paladino U.S. Department of Energy

Hawaiian Electric Companies Technology Innovation and Leading Practices Workshop May 10, 2017

Modern Grid Evolution

Customer needs and policies drive grid capabilities and corresponding enabling business functionality and technology

	New Existing	Grid Capabilities		
		Reliability, Safety & Operational Efficiency	DER Integration	DER Utilization
Functions	Market Operations			
	Grid Operations			
	Planning			

Distribution Platform Capabilities

Capabilities derived from State policy objectives

Distribution System Planning	Distribution Grid Operations		Distribution Market Operations
Scalability 3.1.1	Operational Risk Management 3.2.1	Situational Awareness 3.2.2	Distribution Investment Optimization 3.3.1
Impact Resistance and	Controllability and	Management of DER	Distribution Asset
Impact Resiliency	Dynamic Stability	and Load Stochasticity	Optimization
3.1.2	3.2.3	3.2.4	3.3.2
Open and Interoperable 3.1.3	Contingency Management 3.2.5	Security 3.2.6	Market Animation 3.3.3
Accommodate	Public and	Fail Safe	System
Tech Innovation	Workforce Safety	Modes	Performance
3.1.4	3.2.7	3.2.8	3.3.4
Convergence w/ Other	Attack Resistance/Fault	Reliability and Resiliency	Environmental
Critical Infrastructures	Tolerance/Self-Healing	Management	Management
3.1.5	3.2.9	3.2.10	3.3.5
Accommodate New	Integrated Grid	Control Federation and	Local
Business Models	Coordination	Control Disaggregation	Optimization
3.1.6	3.2.11	3.2.12	3.3.6
Transparency <u>3.1.7</u>	Privacy and Confidentiality 3.2.13	From DSPx Volume 1 – Driven Functionality, ver	Customer and State Policy sion 1.1, March 23, 2017

Integrated Planning Considerations

Integrated planning and analysis needed within and across the transmission, distribution and customer/3rd party domains

Architectural Considerations

Laminar coordination framework enables scaling and optimization at both local and system levels

From JD Taft, Architectural Basis for Highly Distributed Power Grids: Frameworks, Networks, and Grid Codes, PNNL-25480, June 2016

Platform Considerations

Core components are foundational; applications layer on this foundation as additional functionality is needed

From DSPx, Volume 3 – Decision Guide, under review

References

gridarchitecture.pnnl.gov

Office of Electricity Delivery & Energy Reliability