

Grid Scale and DER Resources: Technical Potential of Wind and Solar

Barry Mather, Ph.D.

Group Manager

Power Sys. Engineering Center

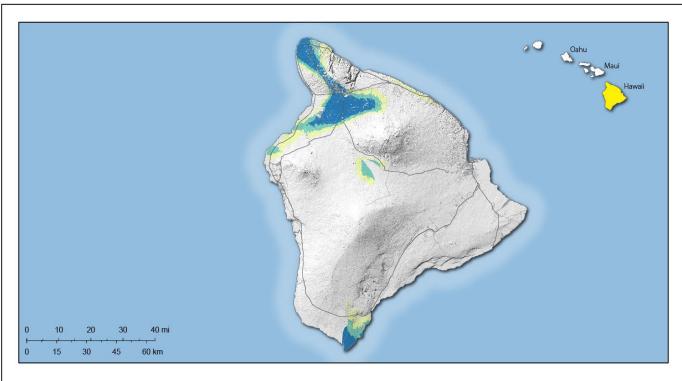
barry.mather@nrel.gov

Study Assumptions

Land Exclusions for Wind and Solar

 National Parks, Fish and Wildlife Service, Flood Zones, Urban Areas, Lava Flow Hazard, Wetlands

Utility-Scale On Shore Wind Power


- 80 m Hub Height
- Power Density: 3 MW/km²
- 20% Slope, Minimum Wind Resource

Utility-Scale Solar PV

- DC/AC Ratio: 1.5
- Single Axis Tracking
- 8.7 Acres/MW_{ac}
- 3%, **5%** & 10% Slope, Minimum Area of 1 km²

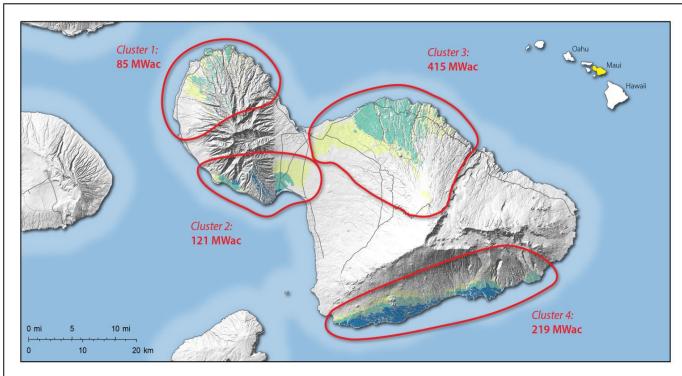
All credits to NREL researchers: Carlo Brancucci Martinez-Anido, Billy Roberts, Erol Charlton, Andrew Weekley, Anthony Lopez, Bri-Mathias Hodge

Wind Resource Potential: Hawaii

Shown is annual average wind speed for resource available considering the following geographic constraints:

- terrain slope is not more than 20%
- · has minimum resource threshold of 6.5 m/s
- is not part of the National or State Park system
- is not Fish & Wildlife Service land
- · has not been zoned as an urban area*
- is not classified as Important Agricultural Land*
- is not within an "A" level flood zone*
- · is not within a lava flow hazard zone 1 or 2*
- is not classified as a wetland*

 *data downloaded from the Hawaii Office of Planning website

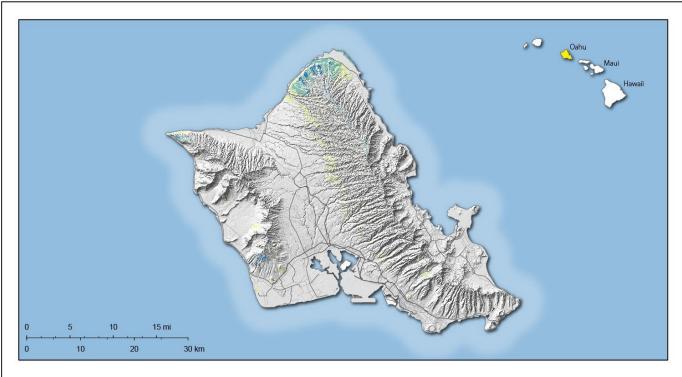

Onshore Wind Speed at 80 meters Analysis of the Hawaiian Islands – Hawaii

Speed (m/s)	Area (km²)	MWac	
≥8.5	445	1,334	
≥7.5	745	2,236	
≥6.5	1,177	3,532	

Wind Resource Potential: Maui

Shown is annual average wind speed for resource available considering the following geographic constraints:

- terrain slope is not more than 20%
- · has minimum resource threshold of 6.5 m/s
- is not part of the National or State Park system
- · is not Fish & Wildlife Service land
- · has not been zoned as an urban area*
- is not classified as Important Agricultural Land*
- · is not within an "A" level flood zone*
- is not within a lava flow hazard zone 1 or 2*
- is not classified as a wetland*
- *data downloaded from the Hawaii Office of Planning website

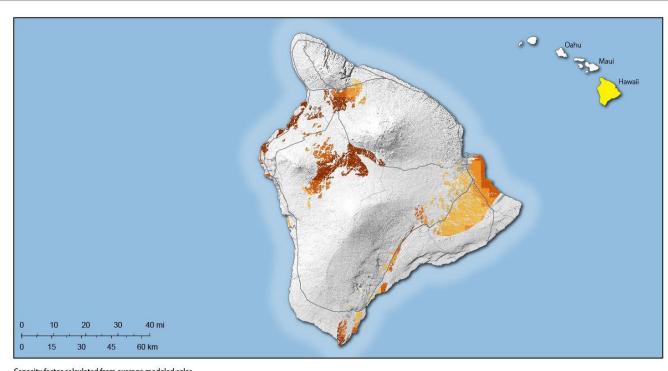

Onshore Wind Speed at 80 meters Analysis of the Hawaiian Islands - Maui

Speed (m/s)	Area (km²)	MWad	
≥8.5	39	118	
≥7.5	150	448	
≥6.5	280	840	

Wind Resource Potential: Oahu

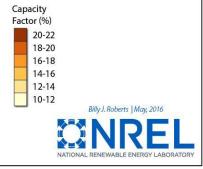
Shown is annual average wind speed for resource available considering the following geographic constraints:

- terrain slope is not more than 20%
- · has minimum resource threshold of 6.5 m/s
- is not part of the National or State Park system
- is not Fish & Wildlife Service land
- · has not been zoned as an urban area*
- is not classified as Important Agricultural Land*
- · is not within an "A" level flood zone*
- is not within a lava flow hazard zone 1 or 2*
- is not classified as a wetland*
- *data downloaded from the Hawaii Office of Planning website

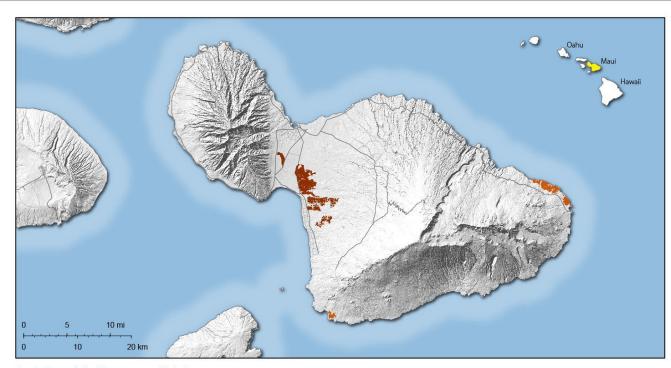

Onshore Wind Speed at 80 meters Analysis of the Hawaiian Islands – Oahu

Speed (m/s)	Area (km²)	MWac
≥8.5	- 5	16
≥7.5	23	68
≥6.5	54	162

Solar Resource Potential: Hawaii



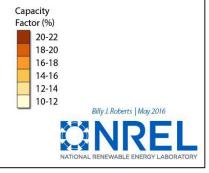
Capacity factor calculated from average modeled solar irradiance from 1998-2014 for a 1-axis system with a dc/ac ratio of 1.5. Development potential was determined by applying the following geographic constraints:


- terrain slope is not more than 5%
- · has a contiguous area of at least 1 km2
- is not part of the National or State Park* system
- is not Fish & Wildlife Service land
- has not been zoned as an urban area*
- is not classified as Important Agricultural Land*
- is not designated agricultural zone A*
- · is not within an "A(x)" level flood zone*
- · is not within a lava flow hazard zone 1 or 2*
- is not classified as a wetland*
- *data acquired from the Hawaii Office of Planning

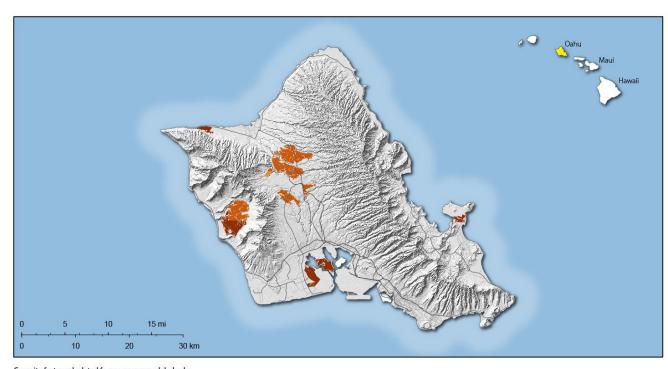
Utility Scale PV Development Potential Analysis of the Hawaiian Islands – Hawaii

CF(%)	Area (km²)	MWac		
≥20	324	9,189		
≥18	555	15,757		
≥16	715	20,312		
≥14	1,058	30,039		
≥12	1,071	30,421		
≥10	1,073	30,484		

Solar Resource Potential: Maui



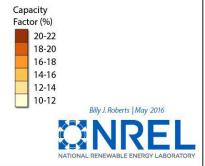
Capacity factor calculated from average modeled solar irradiance from 1998-2014 for a 1-axis system with a dc/ac ratio of 1.5. Development potential was determined by applying the following geographic constraints:


- terrain slope is not more than 5%
- · has a contiguous area of at least 1 km2
- is not part of the National or State Park* system
- is not Fish & Wildlife Service land
- has not been zoned as an urban area*
- is not classified as Important Agricultural Land*
- is not designated agricultural zone A*
- · is not within an "A(x)" level flood zone*
- · is not within a lava flow hazard zone 1 or 2*
- is not classified as a wetland*
- *data acquired from the Hawaii Office of Planning

Utility Scale PV Development Potential Analysis of the Hawaiian Islands – Maui

CF(%)	Area (km²)	MWac	
≥20	20	576	
≥18	28	783	
≥16	28	783	
≥14	28	783	
≥12	28	783	
≥10	28	783	

Solar Resource Potential: Oahu



Capacity factor calculated from average modeled solar irradiance from 1998-2014 for a 1-axis system with a dc/ac ratio of 1.5. Development potential was determined by applying the following geographic constraints:

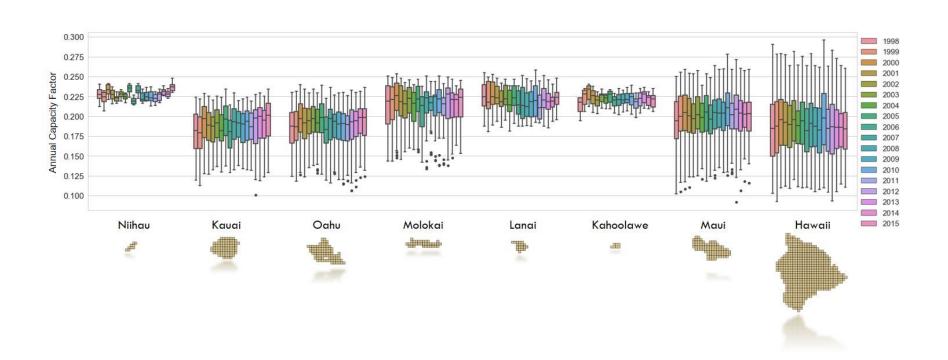
- terrain slope is not more than 5%
- · has a contiguous area of at least 1 km2
- is not part of the National or State Park* system
- is not Fish & Wildlife Service land
- has not been zoned as an urban area*
- is not classified as Important Agricultural Land*
- is not designated agricultural zone A*
- · is not within an "A(x)" level flood zone*
- · is not within a lava flow hazard zone 1 or 2*
- is not classified as a wetland*
- *data acquired from the Hawaii Office of Planning

Utility Scale PV Development Potential Analysis of the Hawaiian Islands – Oahu

CF(%)	Area (km²)	MWac	
≥20	14	397	
≥18	28	793	
≥16	28	796	
≥14	28	796	
≥12	28	796	
≥10	28	796	

The Real Data: Maui

Wind


Mean Wind Speed (m/s) at 80m	Analysis 1 (MW)	Analysis 2 (MW)	Analysis 3 (MW)	Analysis 4 (MW)
>= 6.5	698	698	700	840
>= 7.5	412	412	417	448
>= 8.5	117	117	121	118

Solar PV

Capacity	Analysis	1 (MW)	Analysis 2 (MW)		Analysis 3 (MW)		Analysis 4 (MW)	
Factor	Slope	Slope	Slope	Slope	Slope	Slope	Slope	Slope
(%)	3%	5%	3%	5%	3%	5%	3%	5%
>= 10	0	1,321	0	1,321	697	1,443	272	783
>= 12	0	1,321	0	1,321	697	1,443	272	783
>= 14	0	1,321	0	1,321	697	1,443	272	783
>= 16	0	1,321	0	1,321	697	1,443	272	783
>= 18	0	1,321	0	1,321	697	1,443	272	783
>= 20	0	1,110	0	1,110	697	1,230	272	576

 Analysis provides insight into the ease/cost of transitioning to wind/solar

Inter-Annual Variability of Solar Resource

Quartiles shown for annual capacity over 1998-2015

"Characterizing Inter-Annual Variability of Solar Resource & Capacity Factor of Photovoltaic Power Systems Across the Hawaiian Islands", Richard Bryce, Ignacio Losada Carreño, Andrew Kumler, Bri-Mathias Hodge, Billy Roberts, Carlo Brancucci Martinez-Anido – soon to be published.

Thank you for your attention

Contact:

Barry Mather Ph.D.
National Renewable Energy Laboratory
barry.mather@nrel.gov
(303)-275-4378