

Software for Planning & Optimal Coordination of Distributed Energy Resources

DER Planning and DSO Simulation Studio

Integrated Grid Planning Symposium

November 16th, 2017

Key Themes for Today

About Us

Startup company based in Atlanta, with origins at the Georgia Institute of Technology.

Incorporated in 2014 to develop and commercialize innovative Software for Simulation, Planning, & **Optimal Coordination of** Distributed Energy Resources.

Leading multidisciplinary research (2009-2017) in areas of:

- **Power Systems Modeling** and Operations
- Networked control
- **Stochastic Optimization**
- Visualization
- Integration of Renewables
- **Power System Economics**
- Co-Simulation of Cyber-**Physical Systems**

Our History

2011-2014

Background research on Power Systems, Electricity Markets, Decentralized Grid Optimization

Fall 2014 I-Corps

100

interviews to validate our value proposition

Consortium

National Rural Electric

Cooperative Association

ARPA-e Grant

DER/DSO Simulator

ProsumerGrid™

DOE ACC Clean Energy Challenge Winner

Power Systems
Project

October 2017

Demonstrating our solutions with utility data

+15 Electric
Utility Partners

Our Founding Team

A multidisciplinary team

Santiago Grijalva, PhD (CEO) Future Electricity Grids

- 20+ years of industry experience
- ECE Professor, Georgia Tech
- Former Center Director NREL
- Contributed to PowerWorld

John Higley (CFO) *Industry Engagement*

 Retired Managing Partner for Deloitte's Global Energy & Utilities

Umer Tariq, PhD (Software Arch.)

- Former EVP at EMA
- Contributed to PROMOD

Shabbir Ahmed, PhD (VP R&D) Stochastic Optimization

- ISyE Professor, Georgia Tech
- Former Chair of Stochastic Prog.

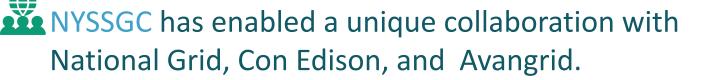
Cyber-Physical SystemsPhD ECE, Georgia Tech

Federated Co-simulation

Magnus Egerstedt, PhD
Networked Control

- ECE Professor, Georgia Tech
- Expert on distributed controls

Marcelo Sandoval, MSc, MBA (COO)

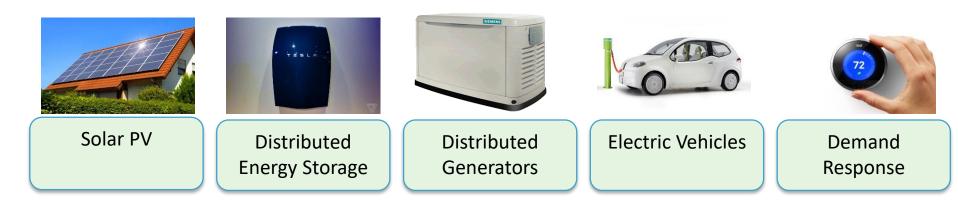

Power System Planning, Ops. & Control

- Former Electrical Engineer at ABB,
 Intel, Eaton Grid Tie Solar Team.
- ECE PhD Candidate

Our Partners

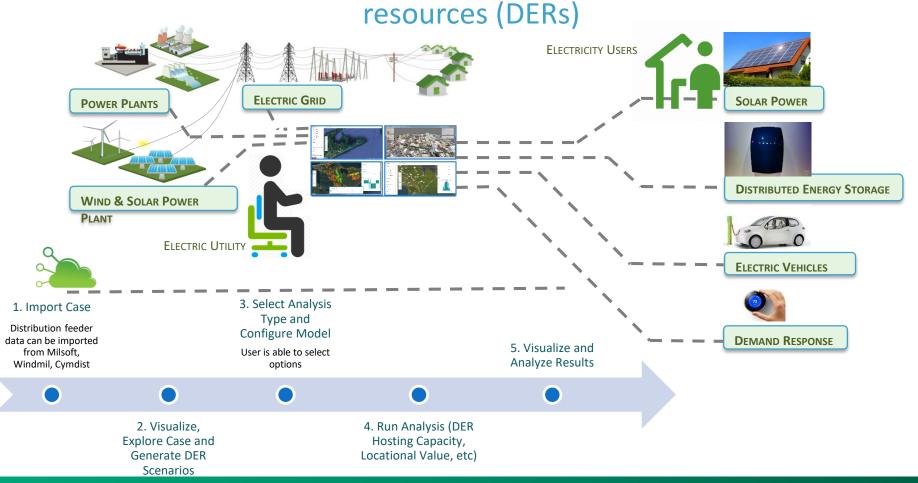
- Strategic partners to help address the complexity of DER integration & DSO/DSP activities.
 - Major DSO/DSP efforts in NY and CA
 - Major utilities in NY and CA provide realistic data, use cases, feedback

NRECA provides a unique partnership channel to more than 800 electric cooperatives.



Key Themes for Today

The Challenge


 The electric grid is transforming into a more sustainable and customeroriented model where Distributed Energy Resources (DERs) become the center of electric grid planning and operations.

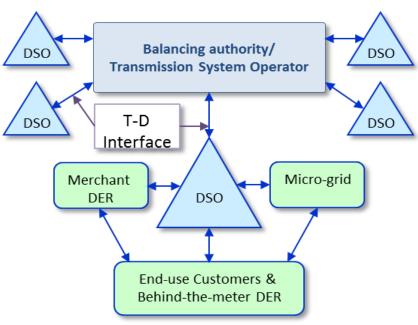
- Investment decisions involve \$1.5 trillion in the U.S. 2010-2030.*
- Electric utilities, regulators and energy service companies require better software tools to simulate, plan, and coordinate the operation of large numbers of intermittent DERs.

Our Solution

A software platform that allows electric utilities to simulate, plan, and optimally coordinate thousands of distributed energy

Our Approach

ProsumerGrid uses advanced optimization, co-simulation of physics and market constraints and user-friendly visualization to develop an interactive, multi-agent software capable of simulating the integrated T&D+DERs impacts at the physical, information, and market levels.



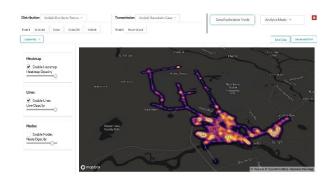
Capabilities: Long-Term Planning Analyses

DER HOSTING CAPACITY ANALYSIS TOOL

HOW MANY DERS CAN BE INSTALLED IN A DISTRIBUTION CIRCUIT?

VALUE & NWA ANALYSIS TOOL

CAN DERS HELP TO AVOID EXPENSIVE CAPITAL INVESTMENTS?


INTEGRATED T&D+DER SIMULATION

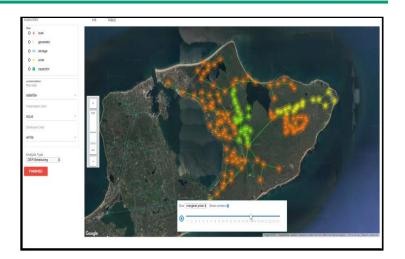
What are the integrated T&D IMPACTS?

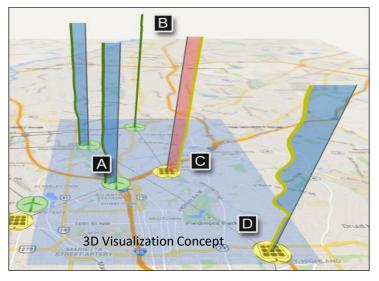
Capabilities: Operational Planning Analyses

OPTIMAL DISPATCH DER DISTRIBUTION SERVICES

How to optimally coordinate DER?

AGGREGATION OF DER FOR TRANSMISSION SIM

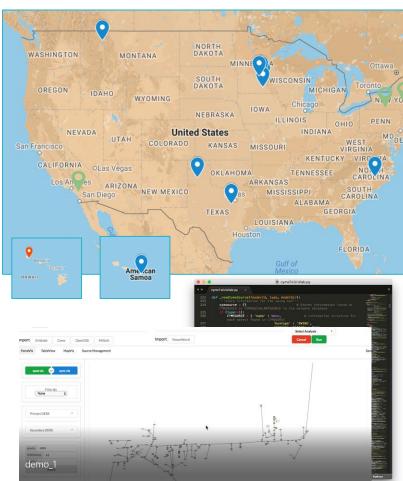

HOW TO AGGREGATE DER SERVICES TO THE TRANSMISSION SYSTEM?


DESIGN OF DER SERVICES & DSO MARKETS

How to Design Distribution Level Markets, Services, Incentives?

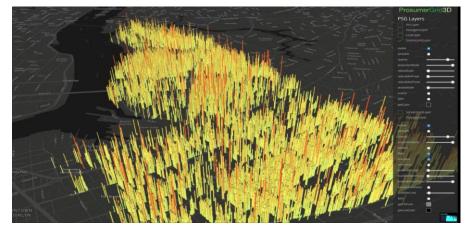
Unique Features

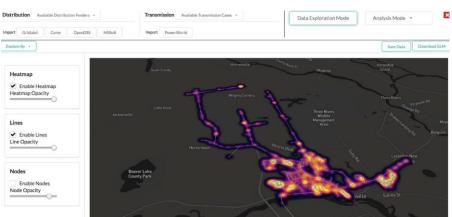
- Geo-Referenced, Interactive Visualization
- Simulation of multi-agent interactions: microgrids, aggregators, DSO/DSP, ISO.
- Decentralized energy scheduling of DER-rich systems of arbitrary size.
- Explicit modeling for transaction of DER-based energy services (timescales can go from seconds to years).
- Analytics for valuation of DER services and utility business models.


13

Key themes for today

Data & Use Cases

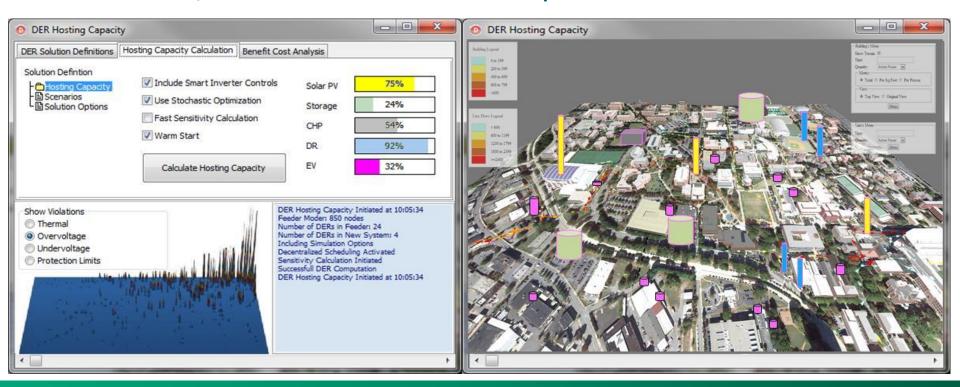

- Established formal partnerships with more than 15 Electric Utilities and Coops.
- We are helping utilities design roadmaps, define use cases and perform analysis.
- Demonstrating solutions with realistic data-sets.



Advanced Visualization

Geo-Referenced, User-Friendly, Interactive Visualization

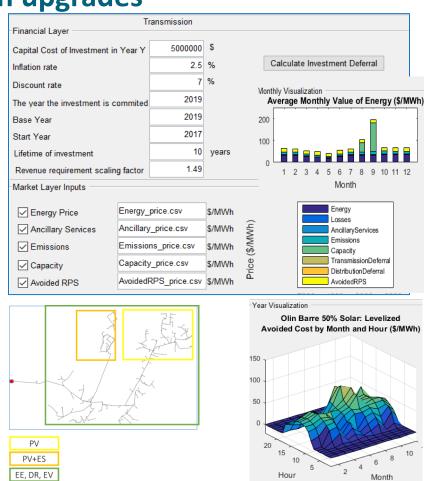
- Web Based Visualization
 - 2D edit view, 2D map, 3D map
 - Interactive, user friendly
- Data Management
 - Able to read system models in many industry-used formats (CYMDIST, MILSOFT, OpenDSS, GridLAB-D)



16

DER Hosting Capacity Analysis Tool

- Supports interconnection studies of arbitrary combinations of multiple types of DER, in complex distribution systems
- Seamless selection of DER penetration options.
- Interactive, 3D Visualization and Analytics



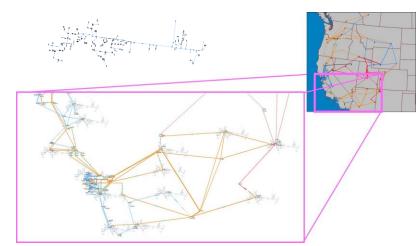
DER Locational Value & NWA

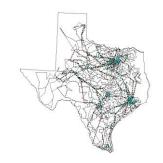
<u> Analysis Tool</u>

 Enables to model, assess and potentially recommend DERs as non-wire alternatives to distribution upgrades

- Integrated (combined and simultaneous effect) of various DER
- Consideration of physical, market, DER & T&D constraints.
- Economic optimization of DER operation
- Locational and temporal specificity (multi-years at 1 hour granularity at specific feeder location)

Integrated T&D+DER Analysis Tool

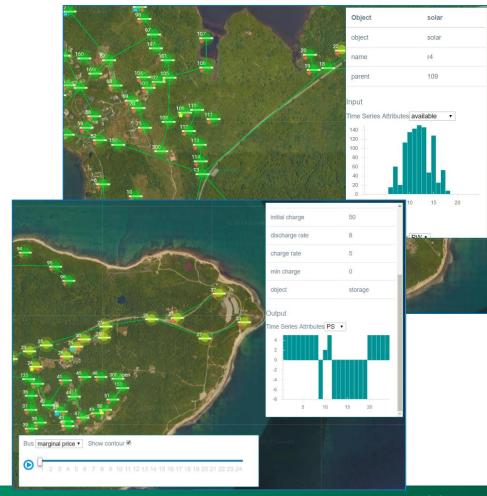

 Enables a combined transmission and distribution modeling to analyze the impact of DERs to the distribution, sub-transmission, transmission grid


Medium case:

- WECC model obtained from the CAISO is utilized for transmission.
- 240 buses (half of the buses in CA)
- 143 generators, 139 loads (20 loads are distribution models)

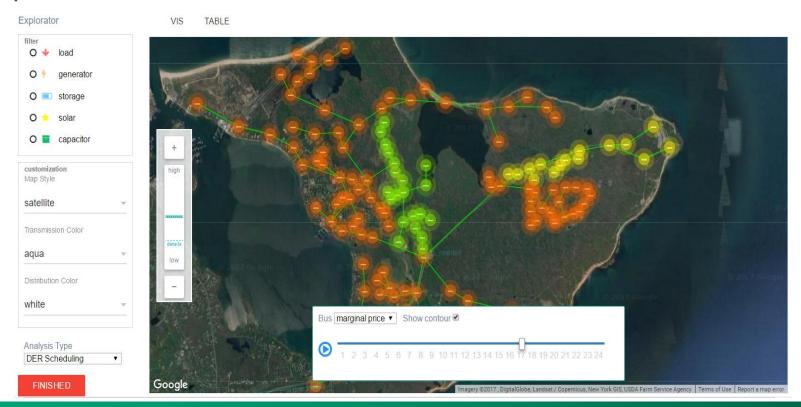
Large case:

- Transmission: 2000-bus case
- Distribution: D1 (14,450 nodes), D2 (8,500 nodes), and D3 (250 nodes) for 100 buses, 100+ DER per feeder



Number of Devices in Case			
Buses	2007	Trans. Lines (AC)	2481
Generators	282	Series Capacitors	0
Loads	1417	LTCs (Control Volt)	0
Switched Shunts	41	Phase Shifters	0
2 Term. DC Lines	0	Mvar Controlling	0

DER Optimal Dispatch Simulation


 Advanced Stochastic Optimization determines the minimum-cost schedule of energy operations of a set of DERs

- Decision variables examples:
 energy storage (charge
 discharge), solar PV
 curtailment, demand response,
 generator output.
- Sample analysis: Quantifying benefits of energy storage for arbitrage, peak demand reduction, ISO bidding and asset upgrade deferral

DER Services Pricing or Incentive Signal Design

- The pricing module uses the optimization module to determine the locational and time-vector marginal prices.
- Visualization of marginal prices for energy derived from the optimization formulation

Capabilities Summary

- 1) Web Based Visualization
 - 2D edit view, 2D map, 3D map
 - Interactive, user friendly
- 2) Data Management & Power Flow Simulation
 - Able to read system models in many industry-used formats (CYMDIST, MILSOFT, OpenDSS, GridLAB-D)
 - Able to setup T&D time-series simulation (GridLAB-D, MATPOWER)
 - Able to set up DER optimization studies and conduct energy scheduling related analysis.

- 3) Analysis
 - Integrated T&D DER Analysis
 - Time-series, Multi-DER
 Impact Analysis
 - DER Non-Wire Alternative
 Assessment
 - DER Optimization for NWA Evaluation
 - DER Portfolio Assessment and Valuation
 - DER Hosting Capacity
 - DER Coordination through
 Portfolio Optimization

Thanks

CONTACT US

info@prosumergrid.com

Learn more: www.prosumergrid.com

