ADMS: a Product or a Philosophy?

Aug 22, 2018 | Blog, Grid Modernization, Utilities and Large Energy Consumers

ADMS: a Product or a Philosophy?

By: Ron Chebra, VP of Grid Modernization
rchebra@enernex.com
865-770-4874

 

As more and more utilities undertake their Grid Modernization journey, an Advanced Distribution Management System (ADMS) is frequently at the core of many of their technology plans. An ADMS typically encompasses multiple application functions such as, Distribution Scada (dSCADA), Outage Management (OMS), Distribution Management (DMS), Distributed Energy Resource Management Systems (DERMS) and in many cases a Demand Response Management Systems (DRMS).  The core enablers to these applications are a suite of supporting systems and tools such as, Graphical Information System (GIS), distribution connectivity model, Asset Management System (AMS), Workforce Management System (WMS) and a data repository system with robust data analytics. The key to enabling the seamless exchange of information is a real-time streamlined operational service bus the most effective means to facilitate harmonization and unified user interfaces.

Many vendors today offer both packaged solutions and comprehensive packages as well as incremental modules that address the complexity of an ADMS. This includes, but is not limited to ABB Ability Network Manager; Advanced Control Systems’ Prism; GE’s Advanced Distribution Management Solutions, Oracle’s Utilities Network Management System; OSI’s Monarch (Multi-platform Open Network ARCHitecture) platform; Schneider Electric’s EcoStruxure ADMS; Siemens Spectrum Power ADMS and Survalent Technology’s SurvalentONE.

However, few if any utilities today are in a position where they can do a clean start by deploying a full turn-key package solution from a single provider. Historically, many of the core elements of a packaged ADMS may already be in place, be fully operationalized, or are already integrated into operations. Also, utility users have benefited from many years of experience, including training and execution expertise, and have established methods and processes in place to leverage these investments.

How then is a utility to benefit from all of the additional value that a highly integrated ADMS can provide when they may have some of the pieces without the full suite? In my view, ADMS is more of a philosophical approach than a package.

A large number of utilities already have Advanced Metering Infrastructure (AMI) systems, and are taking advantage of the information provided by edge sensing and reporting that intelligent meters provide in areas such as voltage threshold reporting and outage “last gasp” messaging.  Integration of this into an OMS has enhanced their isolation and outage reporting capability. This first step of integration also frequently leads to a need to ensure the distribution level circuit modeling is up to date and orchestrated with GIS information.

In some areas where Distributed Energy Resource (DER) deployment is accelerating, utilities have deployed DER management systems (DERMS) and in a similar manner have examined hosting capacity and network analysis.  Demand Response (DR) is another long-standing application where many utilities have made investments in DR management systems (DRMS). These systems represent investments that can be viewed from a bottom-up or top-down perspective.

From a fit for need purpose (bottom-up), these systems are designed to achieve their objective.  They are generally optimized to leverage information, perform their designated decision management functions and are able to execute command and control. From a holistic perspective (top-down), orchestrating individual functions under an ADMS philosophy often times can provide additional options that can be optimized to achieve the desired result.

Non-wires alternatives (NWA) or non-wire solutions (NWS) is a good example of how an ADMS “approach” may be best suited for this meet requirement.

Let’s assume that a given area needs relief during a congested or peak period; while the singular DRMS approach may be to call upon a number of subscribed participants for a DR event to meet the peak, the ADMS approach may decide to use the DR call or some subset of this in conjunction with a Conservation Voltage Reduction (CVR) event for the impacted feeder along with switching in some additional cap banks.

The ability to provide other options necessitates a level of situational awareness and an increased span of control that can only be realized when all of the pertinent information and control is harmonized.  Taking an ADMS philosophy drives information exchange strategies and integration and establishes a richer set of user interfaces that performs greater levels of common control.

Another application use case for harmonized interaction and interchange following the ADMS approach is Fault Location Isolation and Service Restoration (FLISR). Traditionally this may have been handled locally by the DMS or by automatic reclosers and sectionalizers; however, with the augmentation of information from the AMI system provided by the impacted meter’s last gasp and other sensor data provided by edge devices, the alignment of this information can then be applied to a dynamic network connectivity model. This can yield even more granularity and specificity to fault isolation. When this info is then combined with data pulled from Asset Management and GIS, replacement asset allocation and workforce preparatory processes can be further optimized to reduce mean time to repair and restore.

Getting to this philosophical realization is possible, but the journey must begin with the end in mind and a map to get there. To quote the Yogi Berra, “If you don’t know where you are going, you won’t know when you get there.”

EnerNex is here to help you with your roadmap and plan.

Smart Metering (SM) and Advanced Metering Infrastructure (AMI)

Smart Metering and AMI is a transformational process addressing multiple business and technical needs of the utility enterprise. This is more than just smart meters and communications networks; it includes all of the back end applications that can leverage the meter assets, such as outage notification, demand response, call center optimization, disputed billing process handling, pre-payment opportunities, and service connection management methods and procedures, to name a few.

Implementing SM and AMI faces the same business, engineering, and operational challenges as any other across-the-utility information technology endeavors – most notably risk associated with embracing proprietary technology, missing functionality and early obsolescence. Effective SM and AMI development, implementation, and operation relies on a marriage of electric power engineering with information technology expertise: a key component of EnerNex’s expertise and experience.

EnerNex provides an array of engineering and consulting services geared towards intelligent and effective implementation of SM and AMI. This covers all phases of project development, starting with capturing system requirements where our experts leverage a “Use Case” centric view of activities needed to be accomplished and their interaction with systems and other users. Subsequent project steps typically examine other critical areas, such as: modeling of business cases, building inter-department consensus, assembling and assessing system functional requirements and non-functional requirements, developing a system design, hardware and software specifications and standards, complete procurement services including RFI and RFQ process support, supplier rating system, response evaluation methodology, deployment management, and training of office and field personnel.

Demand Response (DR)

Demand response can be as simple as load interruption directed by the energy supplier in response to severe demand requirements, to complex customer defined load management in response to price signals. DR is one of the components of a “Non-Wires Alternative” that many utilities are effectively using to avoid expensive distribution fortification or upgrade.

 

Often the success and/or failure of demand response programs can be linked to program implementation challenges such as rate/tariff design rate structures communication (e.g. price signals) or ineffective incentives used by utilities to encourage customers to accept operational change. The issues of program design, rate structure and customer impact have a tremendous influence on the success or failure of load management initiatives. Demand response has traditionally been used as a tool of the energy industry to ensure system stability. However, the introduction of microelectronics, communications, home automation and the Internet of Things (IoT) has led to the development of cost effective solutions that have the capability to allow the consumer to take control of managing their energy load and ultimately, the price they pay for energy.

EnerNex has the experience and skills to turn your DR program into a successful operational asset and customer engagement process that can deliver value to all parties.

Energy Assurance Planning

Natural and man-made disasters cause an estimated $57B in average annual costs for all parties; large single events have resulted in losses of $100B or more. Events, such as the World Trade Center disaster, Hurricane Katrina, and most recently Hurricane Helene, have demonstrated an acute need to revisit, revise and implement an effective energy assurance plan. Energy assurance plans assess the functionality and interdependencies of buildings and infrastructure systems and the role they play in sustaining service and rapidly restoring critical services to a community following a hazard event.

 

EnerNex assists our clients in developing comprehensive energy assurance plans that mitigate and minimize the impact of energy disruptions. Our experts assess critical infrastructure risks and evaluate appropriate mitigation strategies and can help in developing an effective business continuity/disaster recovery (BC/DR) plan for utilities and your customers.

Microgrid Development

As the electric grid becomes more distributed and interactive, microgrids are playing an increasingly important role in our energy future. Decision makers at military bases, corporate and institutional campuses, residential communities and critical facilities across the world are exploring and implementing microgrids to meet economic, resiliency and environmental goals. Utility-grade microgrids are being deployed to meet transmission constraints, reliability requirements and safe-havens in the event of a significant storm event.

Microgrid_development Graphic steps to support grid modernization

Bringing together a portfolio of distributed energy resources into a controllable, islandable microgrid comes with its own set of challenges. The key to solving these challenges is in architecting a system to support information exchanges between components across well-defined points of interoperability (interfaces) in a technology independent manner. This interoperability ensures that the system is resilient to technology change. Modern systems engineering techniques must be employed to ensure that individual sub‐systems are clearly identified, their functions enumerated, their data requirements known, and the points of interoperability clearly specified, along with the commensurate monitoring, command and control that is needed to ensure grid stability. With such architecture, we can apply best of breed technology available today to support those information exchanges at interface boundaries but be free to upgrade / change the implementation technology later without causing a ripple effect throughout the system.

Enterprise Architecture

Enterprise Architecture focuses on aligning an organization’s business strategies with its anticipated, desired and planned technology enhancements. Enterprise Architecture provides a framework to cost-effectively transition from a current “as-is” technology to future enterprise-wide technological solutions. An effective Enterprise Architecture program aligns business investments with long-term business strategies while minimizing risk and providing superior technological solutions. EnerNex’s key asset is its highly skilled and experienced staff who are closely connected to both the smart grid and EA standards and practices. We provide clients with the insight necessary to operate a fully functioning smart grid, which is flexible, scalable, and vendor independent.

Grid Modernization Roadmap

Utility companies across the globe are continually modernizing their grid. Each company often has different rationales, objectives and priorities. Frequently, smart grid plans are developed for individual, incremental initiatives, rather than as a part of a whole, intelligent and interoperable infrastructure. Planning may be developed around technology choices rather than business and technical requirements. The result of incremental and flawed planning leads to increased cost and risk, lost opportunities, disconnected expectations and dead ends.

 

EnerNex’s approach to grid modernization roadmap development follows a proven, industry-standard approach to grid modernization planning by collaboratively working with the utility to develop a set of prioritized and time-phased grid modernization initiatives unique to its business strategy and objectives. The roadmap developed is holistic, requirements-based, business value driven and actionable. It often builds on and leverages existing applications and infrastructure, and incorporates industry standards to ensure interoperability, flexibility and reduced cost and risk.

Utility Communications

Utility communication and control systems are increasingly interconnected to each other and to public networks and as a result, they are becoming increasingly more susceptible to disruptions and cyber attacks. EnerNex has experience with the various issues relating to development, implementation and optimization including feasibility analysis, design, software development and customization, project management and acceptance. Our expertise extends from being involved in the development of the fundamental standards that support utility communication and automation, through deployment and securing of those resources. EnerNex personnel were heavily involved in development of such standards and protocols as IEC 61850, IEC 60870-5 and DNp3. Our staff played a key role in the EPRI Utility Communication Architecture (UCA) project and the IntelliGrid Architecture effort.

Related Articles

Related

Grid Modernization & Grid Architecture

Helping our clients implement and integrate grid modernization technologies and processes that are aligned with tomorrow’s utility. A Grid Modernization program frequently includes many complex utility engineering and operational topics, many times the scope of these...

read more

Grid Modernization with Artificial Intelligence

_______________________________________________________________________________________________________________________ Introduction The electric power industry is undergoing a transformative era, driven by digitalization, renewable energy integration, and increasing...

read more
X