Volt-Var Control Settings for Smart PVs | Energy Central

by | Mar 7, 2018 | In the News

Vol-Var Control Settings for Smart PVs

Co-authored by: M. Humayun and J. Schoene

Originally published on EnergyCentral.com

Introduction

The penetration of distributed energy resources (DER), such as residential-scale Photovoltaic generation (PV), is increasing owing to their renewable nature and locations closer to electric loads. However, the high penetration of these resources render problems including excessive voltage variation and violation of voltage limits. Some of these problems can be mitigated by equipping DERs with smart inverters which offer functions to control voltage, power flow, and frequency on distribution systems. Contemplating the potential benefits of smart inverters, the power industry has recently introduced new regulations (California Public Utility Commission Rule 21 and IEEE Standard 1547) for their integration in the system. These regulations have paved the way for large-scale deployment of smart DERs. Given the novelty of this technology, there is much uncertainty in the industry with regards to the effects that a large number of autonomously operating smart PVs have and electric utilities are keenly interested that these inverters have control settings that maximize their performance for providing grid support while eliminating unexpected consequences that are detrimental to power quality and system stability. The focus of this article is on smart PVs capability of autonomous Volt-Var control. We discuss the relationship between the Volt-Var curve characteristics and (1) voltage control effectiveness and (2) undesirable voltage and reactive power oscillations occurring during the voltage control process when these smart PVs are deployed in large numbers in a secondary distribution system. This discussion will guide utilities in selecting Volt-Var curves that maximize the PV’s potential to support active voltage regulation without causing adverse effects.

Smart PVs Volt-Var Control

Smart PV Volt-Var control provides dynamic reactive power (VAr) output (absorption or injection) through responses to voltage measurements. The amount of reactive power output from the PV is dictated by a curve defining the percentage of available reactive power versus per-unit voltage at the PV terminal. Var production is curbed if the total apparent power (VA) output that can be determined from the reactive and active power outputs would exceed the PV’s VA rating and the PV is set to active power (Watt) priority (i.e., the inverter is running out of “headroom”). The Smart Inverter Working Group (SIWG) is working on establishing default settings with regards to (1) the shape of the Volt-Var curve (i.e., slope, deadband, and maximum reactive power capacity) and (2) the fastest allowed change in Var output from the inverter in response to either power or voltage changes (i.e., the Var Ramp Rate Limit) without extensive performance evaluation of various curve settings. Consequently, the default SIWG curve is potentially overly conservative and it does not fully leverage smart PVs potential for grid support because, most of the time, the VAr outputs of the PVs are limited to values that are below the available Var capacity of the PVs.

Also, smart PVs can have autonomous or centralized control. In autonomous control, a smart PV responds autonomously to local voltage, whereas, the output of smart PVs is decided at a central location based on measurements from sensing devices deployed on the feeder (e.g., intelligent switches, remote fault indicators, and the smart PV device itself) and then conveyed to all smart PVs in the system using a communication channel. Note that an expensive communication infrastructure is needed to facilitate the communication channels required for centralized control and, therefore, autonomous control, which does not require communication, is thought to be a more economical solution. However, autonomous control may lead to unwanted side effects such as voltage and Var oscillations when smart PV penetration is high.

Smart PV Autonomous Volt-Var Control Oscillations

Smart PV autonomous Volt-Var control may result in undesirable oscillations caused by interactions of smart PVs installed in the system. Figure 1 shows such oscillations captured by quasi-static time-series simulations performed in OpenDSS for a real world secondary distribution residential feeder with a high penetration of smart PVs. The oscillation results are presented for two different scenarios of Volt-Var control settings (gentle and aggressive) in response to an overvoltage condition started after one cycle. The sudden occurrence of overvoltage causes this PV (and the other PVs) to absorb reactive power in order to counteract the overvoltage. The new reactive power output causes the voltage to change, which, in turn, causes the reactive power to change and so on. This interplay between voltage and reactive power causes voltage and reactive power to oscillate. We assume that PV inverters take one cycle to read terminal voltage rms and to apply reactive power and, as a result, the change in reactive power out from PV is slightly delayed from voltage change at the PV terminals. The oscillations either dampen out after some time (in the case of Gentle curve) or continue (in the case of Aggressive curve). In the former case, the oscillations are detrimental to power quality, but may still be acceptable as they cease relatively quickly (within a few cycles). For the latter case, the oscillations do not cease and, consequently, will cause severe power quality and stability problems on the system.

Figure 1: Volt-Var curve settings and oscillations observed at a smart PV terminals.

Oscillation Mitigation by Var Ramp Rate Limit

The smart PVs generated oscillations can be mitigated by the application of adequate Var Ramp Rate Limit which forces PV inverter reactive power output to change steadily until a steady state-state, instead of abrupt changes in Var out from the inverters. However, the limit significantly reduces the speed at which the smart PV regulates the voltage. For instance, voltage regulation with Var Ramp Rate Limit may take longer time for regulation that took only a few cycles for Gentle curve without the limit. This may be a concern for some applications.

Voltage Control Effectiveness

Smart PVs are able to mitigate the overvoltage conditions created by deploying a large number of conventional PVs on a secondary system. The capability of smart PV to mitigate the overvoltage condition depends upon the employed Volt-Var curve. Figure 2 shows the results of our study depicting the voltage at all nodes on the secondary system at each time of day for four scenarios: (a) No PV, (b) Conventional PVs, (c) Smart PVs with Gentle curve, and (d) Smart PVs with Aggressive curve. The voltages depend on the relative location of the node to the generation sources (i.e., the PVs and the sources in the outside system connected through the transformer). Consequently, the node voltages are different for any given time of day. These differences are reflected by the voltage band shown in the figure – without the location dependent voltage differences, the voltage profile would be a single line instead of a band.

Figure 2: Voltage profile for four scenarios (No PV, conventional PV, and smart PV).

The figure shows that the secondary system already suffers from a slight overvoltage at night in the absence of PV and adding conventional PVs causes severe daytime overvoltages. The overvoltage condition is alleviated by smart PVs Var support. The comparison of results from smart PVs Volt-Var curves with a gentle slope and an aggressive slope shows that voltages improvements are greater for the latter, which is an expected result because the aggressive curve cause higher reactive power output for the same overvoltage. In general, in comparison with conventional PVs, smart PVs exhibit a wider voltage band that is shifted towards lower values, which shows that smart PVs improve the voltages of the system significantly during the day as well as during night hours with the aggressive curve exhibiting more effective voltage control performance.

Summary and Conclusion

It is important to select Volt-Var control settings for smart PVs sensibly in order to gain effective voltage regulation and at the same time avoiding any interactions among them that are detrimental to power quality. We show the impact of Volt-Var control settings of autonomous residential PVs on active voltage regulation on a real-world secondary distribution system. The aggressive Volt-Var curve settings are more effective for voltage regulation because of their aggressive reactive power outputs. However, the aggressive settings without Var Ramp Rate Limit can result in unacceptable sustained voltage oscillation. In our simulations, sustained oscillations were eliminated by applying SIWG Var Ramp Rate Limit to the PV inverter, although this mitigation measure may not work in all situations and, therefore, future research is warranted. A disadvantage of adding this limit is that the voltage control response takes longer (although it is still much faster than the response of conventional voltage control equipment to voltage changes), which can be problematic for some applications.

 J. Schoene, V. Zheglov, M. Humayun, B. Poudel, M. Kamel, A. Gebeyehu, M. Garcia, S. Robles, and H. Son, “Investigation of oscillations caused by voltage control from smart PV on a secondary system,” in IEEE PES General Meeting, Chicago, IL, Jul. 2017

Smart Metering (SM) and Advanced Metering Infrastructure (AMI)

Smart Metering and AMI is a transformational process addressing multiple business and technical needs of the utility enterprise. This is more than just smart meters and communications networks; it includes all of the back end applications that can leverage the meter assets, such as outage notification, demand response, call center optimization, disputed billing process handling, pre-payment opportunities, and service connection management methods and procedures, to name a few.

Implementing SM and AMI faces the same business, engineering, and operational challenges as any other across-the-utility information technology endeavors – most notably risk associated with embracing proprietary technology, missing functionality and early obsolescence. Effective SM and AMI development, implementation, and operation relies on a marriage of electric power engineering with information technology expertise: a key component of EnerNex’s expertise and experience.

EnerNex provides an array of engineering and consulting services geared towards intelligent and effective implementation of SM and AMI. This covers all phases of project development, starting with capturing system requirements where our experts leverage a “Use Case” centric view of activities needed to be accomplished and their interaction with systems and other users. Subsequent project steps typically examine other critical areas, such as: modeling of business cases, building inter-department consensus, assembling and assessing system functional requirements and non-functional requirements, developing a system design, hardware and software specifications and standards, complete procurement services including RFI and RFQ process support, supplier rating system, response evaluation methodology, deployment management, and training of office and field personnel.

Demand Response (DR)

Demand response can be as simple as load interruption directed by the energy supplier in response to severe demand requirements, to complex customer defined load management in response to price signals. DR is one of the components of a “Non-Wires Alternative” that many utilities are effectively using to avoid expensive distribution fortification or upgrade.

 

Often the success and/or failure of demand response programs can be linked to program implementation challenges such as rate/tariff design rate structures communication (e.g. price signals) or ineffective incentives used by utilities to encourage customers to accept operational change. The issues of program design, rate structure and customer impact have a tremendous influence on the success or failure of load management initiatives. Demand response has traditionally been used as a tool of the energy industry to ensure system stability. However, the introduction of microelectronics, communications, home automation and the Internet of Things (IoT) has led to the development of cost effective solutions that have the capability to allow the consumer to take control of managing their energy load and ultimately, the price they pay for energy.

EnerNex has the experience and skills to turn your DR program into a successful operational asset and customer engagement process that can deliver value to all parties.

Energy Assurance Planning

Natural and man-made disasters cause an estimated $57B in average annual costs for all parties; large single events have resulted in losses of $100B or more. Events, such as the World Trade Center disaster, Hurricane Katrina, and most recently Hurricane Helene, have demonstrated an acute need to revisit, revise and implement an effective energy assurance plan. Energy assurance plans assess the functionality and interdependencies of buildings and infrastructure systems and the role they play in sustaining service and rapidly restoring critical services to a community following a hazard event.

 

EnerNex assists our clients in developing comprehensive energy assurance plans that mitigate and minimize the impact of energy disruptions. Our experts assess critical infrastructure risks and evaluate appropriate mitigation strategies and can help in developing an effective business continuity/disaster recovery (BC/DR) plan for utilities and your customers.

Microgrid Development

As the electric grid becomes more distributed and interactive, microgrids are playing an increasingly important role in our energy future. Decision makers at military bases, corporate and institutional campuses, residential communities and critical facilities across the world are exploring and implementing microgrids to meet economic, resiliency and environmental goals. Utility-grade microgrids are being deployed to meet transmission constraints, reliability requirements and safe-havens in the event of a significant storm event.

 

Bringing together a portfolio of distributed energy resources into a controllable, islandable microgrid comes with its own set of challenges. The key to solving these challenges is in architecting a system to support information exchanges between components across well-defined points of interoperability (interfaces) in a technology independent manner. This interoperability ensures that the system is resilient to technology change. Modern systems engineering techniques must be employed to ensure that individual sub‐systems are clearly identified, their functions enumerated, their data requirements known, and the points of interoperability clearly specified, along with the commensurate monitoring, command and control that is needed to ensure grid stability. With such architecture, we can apply best of breed technology available today to support those information exchanges at interface boundaries but be free to upgrade / change the implementation technology later without causing a ripple effect throughout the system.

Enterprise Architecture

Enterprise Architecture focuses on aligning an organization’s business strategies with its anticipated, desired and planned technology enhancements. Enterprise Architecture provides a framework to cost-effectively transition from a current “as-is” technology to future enterprise-wide technological solutions. An effective Enterprise Architecture program aligns business investments with long-term business strategies while minimizing risk and providing superior technological solutions. EnerNex’s key asset is its highly skilled and experienced staff who are closely connected to both the smart grid and EA standards and practices. We provide clients with the insight necessary to operate a fully functioning smart grid, which is flexible, scalable, and vendor independent.

Grid Modernization Roadmap

Utility companies across the globe are continually modernizing their grid. Each company often has different rationales, objectives and priorities. Frequently, smart grid plans are developed for individual, incremental initiatives, rather than as a part of a whole, intelligent and interoperable infrastructure. Planning may be developed around technology choices rather than business and technical requirements. The result of incremental and flawed planning leads to increased cost and risk, lost opportunities, disconnected expectations and dead ends.

 

EnerNex’s approach to grid modernization roadmap development follows a proven, industry-standard approach to grid modernization planning by collaboratively working with the utility to develop a set of prioritized and time-phased grid modernization initiatives unique to its business strategy and objectives. The roadmap developed is holistic, requirements-based, business value driven and actionable. It often builds on and leverages existing applications and infrastructure, and incorporates industry standards to ensure interoperability, flexibility and reduced cost and risk.

Utility Communications

Utility communication and control systems are increasingly interconnected to each other and to public networks and as a result, they are becoming increasingly more susceptible to disruptions and cyber attacks. EnerNex has experience with the various issues relating to development, implementation and optimization including feasibility analysis, design, software development and customization, project management and acceptance. Our expertise extends from being involved in the development of the fundamental standards that support utility communication and automation, through deployment and securing of those resources. EnerNex personnel were heavily involved in development of such standards and protocols as IEC 61850, IEC 60870-5 and DNp3. Our staff played a key role in the EPRI Utility Communication Architecture (UCA) project and the IntelliGrid Architecture effort.

Related Articles

Related

The Many Faces of FLISR | T&D World

The Many Faces of FLISR The basic idea of FLISR is to quickly identify the location of a fault and then isolate the faulted area as tightly as possible Rick Wornat, Aaron Snyder | Jan 11, 2019 Published in T&D World As a means to improve distribution system...

read more
X